\qquad
1.2.2 How can I undo complicated functions?

Inverse Functions

\#76 Shawn is a factory manager. She knows that on any given day, n employees can fill $p=2 n^{2}-8$ orders.

f. Graph your equation from part (e) on the same set of axes as the original function. How are your graphs related? How are your equations related?
\#78 A table and graph of $y=g(x)$ are shown on the, but a chocolate milk spill makes the equation of g impossible to read.
a / b. How does Rowen plan to complete a table and graph without knowing the equation of the inverse? Discuss this with your team, then complete these two representations.

x	y
-2	-6
-1	0
0	2
1	1.5
2	0
3	-1
4	0
5	4.5

x	y

Graphs:

c. Is g invertible? Can the inverse of g be written as g_{-1} ? Explain why or why not.
\#80
a. Neatly sketch the graph of its inverse.

$$
f(x)=3(x-4)^{2}
$$

b. Select a section of the graph of $y=f(x)$ so that this section is as large as possible and the inverse of this section is a function. Darken both the section of $y=f(x)$ you selected and the inverse of this section and fill in the missing information below.

Original Function:	Inverse Function:
Restricted Domain:	Inverse Domain:
Range:	

