\qquad Name: \qquad
Period: A1 A2 A3 B1 B3
2.1.1 How can I graph it?

Transforming Quadratic Functions

| \#2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Equation | Predicted Graph | Actual Graph | How accurate was your
 prediction? What mistakes
 did you make? | |
| $y=(x+9)^{2}$ | | | | |
| $y=x^{2}+7$ | | | | |

\#2 Continued

Equation	Predicted Graph	Actual Graph	How accurate was your prediction? What mistakes did you make?		
$y=\frac{1}{3}(x-1)^{2}$					
$y=-(x-7)^{2}+6$					

What information did you need to make a sketch without using a table? Explain clearly.

\#3			
Equation	Graph		What information did you need to make a graph without using a table? How did you find that information from the equation?
a. $y=(x-7)^{2}-2$			

\#4 How can you make a graph without a table when the equation is given in standard form $\left(y=a x^{2}+b x+c\right)$? Consider the function $y=2 x^{2}+4 x-30$.
a. What is the orientation of the graph? That is, does it open upward or open downward? How could you change the equation to make the graph open the opposite way?
C.

i. What are the	ii. Where is the vertex	iii. Use the x-coordinate of
x-intercepts of the	located in relation to the	the vertex to find its
parabola?	x-intercepts? Can you	y-coordinate.
	use this relationship to	
find the x-coordinate of		
	the vertex?	

d. Sketch a graph of $y=2 x^{2}+4 x-30$.	e. Verify that both forms of your equation are equivalent.
Equation in Graphing Form:	

