

what the graph would look like if the distance was constant over a period of time.

#3 By definition, a function is increasing over the interval $x_1 < x < x_2$ if $f(x_1) < f(x_2)$ for all $x_1 < x_2$. This simply means that when you trace along a graph from left to right, if your finger is moving up, then the function is increasing.	
a . In Riley's situation, let $x_1 = 1.5$ and $x_2 = 2.0$. What are $f(x_1)$ and $f(x_2)$? Is $f(x_1) < f(x_2)$?	b . If you choose any two points x_1 and x_2 between $x = 1.5$ and $x = 2$, is $f(x_1) < f(x_2)$ for all $x_1 < x_2$? If so, then <i>f</i> is increasing for $1.5 < x < 2$.
c . Sketch an example of a function that has an interval where it is increasing. Label two points on the <i>x</i> -axis x_1 and x_2 such that $x_1 < x_2$. On your graph, is it true that $f(x_1) < f(x_2)$? Explain.	d. Now that you know the definition of an increasing function, write a similar definition for a decreasing function. Include an example sketch. Discuss your definition with your team to verify that your definition is correct.

Г

One day Riley decides to take a scenic drive. The graph below represents Riley's trip.		
 #4 Points on a graph that are "high" points or "low" points are called extreme points, or extrema. A local maximum/minimum of a function is the largest/smallest value of the function within a small interval around the extreme point. A global maximum/minimum of a function is the largest/smallest value of the function over its entire domain. The plural of maximum is maxima and the plural of minimum is minima. 		
a. Maxima:	b. Minima:	
Local: Global:	Local: Global:	
c .Describe the graph near a local maximum point using the words increasing and decreasing. How is it changing?	d. Describe the graph near a local minimum point using the words increasing and decreasing. How is it changing?	
#5 Concavity In mathematics, functions are described as being either "concave up" or "concave down" over given intervals. Intuitively, on a graph, a function is concave up wherever you can trace a "cup" or a u-shaped curve that is right side up. Take another look at Riley's drive.		
a. Concave up intervals:	b. Concave down intervals:	
c . A point where the concavity of a graph changes is called a point of inflection. Identify the points of inflection.		
Points of inflection:		