\qquad
2.2.1 You've got me going in circles.

\#42 There are many patterns in the labeled unit circle you just completed. With your team, identify as many patterns as possible. Be prepared to share these patterns with the class.

\#43

Look at the coordinates of all the special angles with a denominator of 6 .
What do you notice? The angle $\frac{\pi}{6}$ is called the reference angle of the angle and the x-axis.

What is the reference angle for ${ }^{\frac{4 \pi}{3}}$?

2.2.1 You've got me going in circles.

\#44 What if an angle is negative or greater than 2π ? Angles in these categories are coterminal with angles for which $0 \leq \theta<2 \pi$. Recall that coterminal angles are two (or more) angles that have their initial and terminal sides in the same positions.
For example, $\frac{\pi}{2},-\frac{3 \pi}{2}$, and $\frac{5 \pi}{2}$ are coterminal angles.
For each angle given below, determine a coterminal angle, α, such that $0 \leq \alpha<2 \pi$. Sketch the angle in a unit circle and write the corresponding coordinates of the point on the circle.

a. $\theta=-\frac{\pi}{4}$	b. $\theta=\frac{7 \pi}{3}$
c. $\theta=-\frac{5 \pi}{6}$	d. $\theta=\frac{11 \pi}{4}$

