2.2.1 You've got me going in circles.

Special Angles in the Unit Circle

#42 There are many patterns in the labeled unit circle you just completed. With your team, identify as many patterns as possible. Be prepared to share these patterns with the class.

#43

Look at the coordinates of all the special angles with a denominator of 6.

What do you notice? The angle $\frac{\pi}{6}$ is called the **reference** angle of the angle and the *x*-axis.

What is the reference angle for $\frac{4\pi}{3}$?

2.2.1 You've got me going in circles.

Special Angles in the Unit Circle

#44 What if an angle is negative or greater than 2π ? Angles in these categories are coterminal with angles for which $0 \le \theta < 2\pi$. Recall that coterminal angles are two (or more) angles that have their initial and terminal sides in the same positions.

For example, $\frac{\pi}{2}$, $-\frac{3\pi}{2}$, and $\frac{5\pi}{2}$ are coterminal angles.

For each angle given below, determine a coterminal angle, α , such that $0 \le \alpha < 2\pi$. Sketch the angle in a unit circle and write the corresponding coordinates of the point on the circle.

a.θ	=	_	$\frac{\pi}{4}$

$$b.\theta = \frac{7\pi}{3}$$

$$c.\theta = -\frac{5\pi}{6}$$

$$d.\theta = \frac{11\pi}{4}$$