\qquad
2.2.2 What does the unit circle tell me?

Trigonometric Ratios in the Unit Circle
\#56
a.

θ (radians)	θ (degrees)	$\cos (\theta)$	$\sin (\theta)$	$\tan (\theta)$
0	0°			
$\frac{\pi}{6}$	30			
$\frac{\pi}{4}$				
$\frac{\pi}{3}$				
$\frac{\pi}{2}$				
$\frac{2 \pi}{3}$				
$\frac{3 \pi}{4}$				
$\frac{5 \pi}{6}$				
π				
$\frac{7 \pi}{6}$				
$\frac{5 \pi}{4}$				
$\frac{4 \pi}{3}$				
$\frac{3 \pi}{2}$				
$\frac{5 \pi}{3}$				
$\frac{7 \pi}{4}$				
2π				

b. What patterns do you notice between the values in your table and the coordinates of the corresponding points?
c. State a range of values for $\cos (\theta)$. Then state a range for $\sin (\theta)$. Why are these ranges limited to the stated values?

\#57

Conor draws a circle with a radius of 3 and uses a special right triangle to label the coordinates. He determines that $\sin \left(\frac{5 \pi}{6}\right)$ is equal to 1.5 , the value of the y-coordinate. Is Conor correct? Why or why not?

\#58

a. Review the diagram at right. In terms of x and y, what does $\tan (\theta)$ equal?	
b. In terms of $\sin (\theta)$ and $\cos (\theta)$, what does $\tan (\theta)$ equal?	d.Do your answers for part (a) and part (b) work for circles with radii other than one? Explain your reasoning.
c.How can tan(θ) be described geometrically?	
e.Add a column to your table from problem $2-56$ for tan(θ). Complete this column using your observations from parts (a) through (d).	f.State a range of values for tan(θ).

\#59 Sketch a unit circle. Then draw a right triangle with its base on the x-axis and vertex at the origin in your unit circle, as shown in the diagram in problem 2-58.
a.Write the equation of the unit circle.
b.Using what you know about x and y in the unit circle, rewrite the equation in terms of $\sin (\theta)$ and $\cos (\theta)$.
c.The equation you found in part (b) is referred to as the Pythagorean Identity. Why do you think it is named as such?

