\qquad

2.2.4 How do I shift trig functions?

\#93 Sketch a graph of $y=\sin (x)$ that shows the general shape of the curve and key points. Label the coordinates of the points you feel are key points in creating this graph.

a. Sketch a graph of $y=\sin (x)$ that is translated $\frac{\pi}{3}$ units to the right. Again, label the points you feel are key points in creating this graph. Then write an equation for this graph.

Equation:

b. Now sketch a graph of $y=\sin (x)$ that is translated 2 units up. Again, label the points you feel are key points in creating this graph. Then write an equation for this graph.

Equation:

c.Verify your answers for parts (a) and (b) using a calculator. Make adjustments if necessary.
\#94 Sketch a graph of each of the following functions, labeling the key points. Be sure to graph at least two cycles. As you sketch the curves, think about a general method that can be used to sketch the graph of any sinusoidal function. Be prepared to share your strategies with the class.
a. $y=\sin (x)-2$

b. $y=\cos (x)+1$

c. $y=\sin \left(x-\frac{\pi}{4}\right)$

\#94 Continued

$$
\text { d. } y=\cos \left(x+\frac{\pi}{2}\right)
$$

e. $y=\sin \left(x-\frac{\pi}{4}\right)-2$

f. $y=\cos \left(x+\frac{\pi}{2}\right)+1$

\#95 The midline of a sinusoidal (relating to the sine curve) function is the horizontal line that splits the graph of the function in half. The distance between the midline of the function and a maximum or minimum point on the graph is called the amplitude.
a. What is the amplitude of $y=\sin (x)$? What about $y=\cos (x)$?
b. Sketch a transformation of $y=\sin (x)$ that has an amplitude of 3 . Then write the equation of the transformed graph. Check your answer with a graphing calculator.

Equation:
c. Now sketch a transformation of $y=\cos (x)$ that has an amplitude of $\frac{1}{2}$ and write the corresponding equation. Check your answer with a graphing calculator.

Equation:

