\qquad Name: \qquad
2.2.5 How do I stretch a sine wave?

Horizontal Stretches of Sine and Cosine Graphs

\#107 Use a calculator to graph each functions in parts (a) through (c) below on top of one of the parent graph $f(x)=\sin (x)$.
a. $f(x)=\sin (2 x)$

b. $f(x)=\sin (3 x)$

c. $f(x)=\sin (0.5 x)$

d. In the general equation $f(x)=\sin (b x)$, how does the value of b change the graph of $f(x)=\sin (x)$?
f. For each of the functions in parts (a) through (c), how many periods occur in 2π ?
e. State the period for each of the functions you graphed in parts (a) through (c).
g. What is the period of the graph of $y=\sin (b x)$?
\#108 Graph $f(x)=2 \sin (x)-1$. Then use your graph of $y=f(x)$ to graph $g(x)=2 \sin (3 x)-1$ on the same set of axes

How are the two graphs the same?

How are the two graphs different?
\#109 Sketch a graph of each of the following functions, labeling the key points. As you sketch the graphs, think about a general method that can be used to sketch the graph of any sinusoidal function. Be prepared to share your strategies with the class. For each function, state the b-value and the period of the graph.
a. $f(x)=-2 \sin (4 x)+3$

Midline:
Amplitude:
b - value:
Period:
\#109 Continued
b. $h(x)=5 \cos \left(\frac{x}{3}\right)-3$

Midline:
Amplitude:
b - value:
Period:
c. $g(x)=3 \sin \left(\frac{\pi}{2} x\right)$

Midline:
Amplitude:
b-value:
Period:
d. $j(x)=4 \cos \left(\frac{2 \pi}{7} x\right)-1$

> Midline:
> Amplitude:
> b - value:
> Period:

