\qquad
3.1.1 How can I solve the equation?

Strategies for Solving Equations

\#1 SOLVING GRAPHICALLY

One of the big ideas of Chapter 2 was how to determine special points on the graph of a function. For example, you used the equation of a parabola written in graphing form to locate its vertex without graphing. But what about the locations of other points on the parabola? Consider the graph of $y=(x+3)^{2}-5$ at right.

a. How many solutions does the equation $y=(x+3)^{2}-5$ have? How is this shown on the graph?
b. How many solutions does the equation $(x+3)^{2}-5=4$ have? How is this shown on the graph?
c. Use the graph to solve the equation $(x+3)^{2}-5=4$. How did the graph help you solve the equation?

\#2 ALGEBRAIC STRATEGIES

Solve the equation $(x+3)^{2}-5=11$ in two different strategies.

Method 1

Method 2

\#3 Three strategies your class or team may have used in problem 3-2 are:

- Rewriting: Using algebra to write a new equivalent equation that is easier to solve.
- Looking Inside: Reasoning about the value of the expression inside the function or parentheses.
- Undoing: Reversing or doing the opposite of an operation; for example, taking a square root to eliminate squaring.

Given: $\frac{x-5}{4}+\frac{2}{5}=\frac{9}{10}$

\#4 Given: $x^{2}+2.5 x-1.5=0$
a. Rewrite the equation so that it has no decimals.
b. Rewrite your equation again, so that you can solve it without using the Quadratic Formula.
Then solve your equation.
\#5 Solve each equation, if possible, using any strategy. Name your strategy and check with your teammates to see what strategies they choose. Be sure to check your solutions algebraically.

| a. $4\|8 x-2\|=8$ | b. $3 \sqrt{4 x-8}+9=15$ |
| :--- | :--- | :--- |
| | |
| Strategies used: $\quad(2 y-3)(y-2)=-12 y+18$ | Strategies used: |
| c. | d. $\quad \frac{5}{x}+\frac{1}{3 x}=\frac{4 x}{3}$ |
| Strategies used: | |

\#6 Graciela and Walter are working on solving each of the equations at below.

$$
\begin{array}{ll}
\text { i. } x^{2}+7 x+12=0 & \text { ii. }\left(\frac{1}{2} x+7\right)^{2}+7\left(\frac{1}{2} x+7\right)+12=0
\end{array}
$$

a.	b.	
c		
$\square=-3$	$\square=-4$	
		d.

\#7 Consider each of the following equations. What structure can you see that might help you rewrite the equation?

a. $\left(m^{2}+5 m-24\right)^{2}-\left(m^{2}+5 m-24\right)=6$		b. $x^{2 / 3}-x^{1 / 3}-56=0$	
$\mathbf{u}=$			
Rewritten Equation:		Rewritten Equation:	
c. $y^{6}+3 y^{3}-18=0$	d. $p-$		e. $3^{\sqrt{x+\frac{1}{4}}}=9^{\left(\sqrt{x+\frac{1}{4}}\right)^{2}}$
			$\mathbf{u}=$
Rewritten Equation:	Rewrit	ation:	Rewritten Equation:

\#8 Solve two of the equations from problem \#7 using the " u " substitution.

Equation 1:	Equation 2:

