CW#__

Name:

3.1.1 How can I solve the equation?

Strategies for Solving Equations

#3 Three strategies your class or team may have used in problem 3-2 are:

- **Rewriting:** Using algebra to write a new equivalent equation that is easier to solve.
- Looking Inside: Reasoning about the value of the expression inside the function or parentheses.
- **Undoing:** Reversing or doing the opposite of an operation; for example, taking a square root to eliminate squaring.

Given:
$$\frac{x-5}{4} + \frac{2}{5} = \frac{9}{10}$$

a. Ernie decides to multiply both sides of the equation by 20 so that his equation becomes $5(x - 5) + 8 = 18$. Which strategy does Ernie use? How can you tell?	b. Elle takes Ernie's equation and decides to subtract 8 from both sides to get 5(x-5) = 10. Which strategy does Elle use?	c. Eric looks at Elle's equation and says, "I can tell that (x - 5) must equal 2 because $5 \cdot 2 = 10$. Therefore, if $x - 5 = 2$, then x must be 7." What strategy does Eric use?		
#4 Given: $x^2 + 2.5x - 1.5 = 0$				

a. Rewrite the equation so that it has no decimals.	b. Rewrite your equation again, so that you can solve it without using the Quadratic Formula. Then solve your equation.

#7 Consider each of the following equations. What structure can you see that might help you rewrite the equation?

$a.(m^2 + 5m - 24)^2 - (m^2 + 5m - 24) = 6$		b. $x^{2/3} - x^{1/3} - 56 = 0$	
u=		u=	
Rewritten Equation:		Rewritten Equation:	
c. $y^6 + 3y^3 - 18 = 0$	d. $p - 12\sqrt{p} = -35$		e. $3^{\sqrt{x+\frac{1}{4}}} = 9^{\left(\sqrt{x+\frac{1}{4}}\right)^2}$
u=	u=		u=
Rewritten Equation:	Rewritten Equation:		Rewritten Equation:

#8 Solve two of the equations from problem #7 using the " u " substitution.			
Equation 1:	Equation 2:		