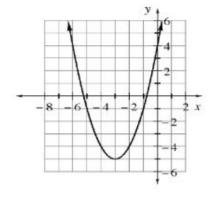
Period: A1 A2 A3 B1


3.1.1 How can I solve the equation?

Strategies for Solving Equations

#1 SOLVING GRAPHICALLY

One of the big ideas of Chapter 2 was how to determine special points on the graph of a function. For example, you used the equation of a parabola written in graphing form to locate its vertex without graphing. But what about the locations of other points on the parabola? Consider the graph of $y = (x + 3)^2 - 5$ at right.

a. How many solutions does the equation $y = (x + 3)^2 - 5$ have? How is this shown on the graph?

b. How many solutions does the equation $(x + 3)^2 - 5 = 4$ have? How is this shown on the graph? c. Use the graph to solve the equation $(x + 3)^2 - 5 = 4$. How did the graph help you solve the equation?

#2 ALGEBRAIC STRATEGIES

Solve the equation $(x + 3)^2 - 5 = 11$ in two different strategies.

N	le	tt	าด	d	1

Method 2

#3 Three strategies your class or team may have used in problem 3-2 are:

- Rewriting: Using algebra to write a new equivalent equation that is easier to solve.
- Looking Inside: Reasoning about the value of the expression inside the function or parentheses.
- **Undoing:** Reversing or doing the opposite of an operation; for example, taking a square root to eliminate squaring.

Given:
$$\frac{x-5}{4} + \frac{2}{5} = \frac{9}{10}$$

- a. Ernie decides to multiply both sides of the equation by 20 so that his equation becomes 5(x-5) + 8 = 18. Which strategy does Ernie use? How can you tell?
- b. Elle takes Ernie's equation and decides to subtract 8 from both sides to get 5(x-5) = 10. Which strategy does Elle use?
- c. Eric looks at Elle's equation and says, "I can tell that (x 5) must equal 2 because $5 \cdot 2 = 10$. Therefore, if x 5 = 2, then x must be 7." What strategy does Eric use?

#4 Given: $x^2 + 2.5x - 1.5 = 0$

- a. Rewrite the equation so that it has no decimals.
- b. Rewrite your equation again, so that you can solve it without using the Quadratic Formula. Then solve your equation.

#5 Solve each equation, if possible, using any strategy. Name your strategy and check with your teammates to see what strategies they choose. Be sure to check your solutions algebraically.				
a. $4 8x-2 =8$	b. $3\sqrt{4x-8}+9=15$			
Strategies used:	Strategies used:			
c. $(2y-3)(y-2) = -12y + 18$	d. $\frac{5}{x} + \frac{1}{3x} = \frac{4x}{3}$			
Strategies used:	Strategies used:			

e.	3-7x	= -6

$$_{ extsf{f.}}rac{6w-1}{5}-3w=rac{12w-16}{15}$$

Strategies used:

Strategies used:

g.
$$(x-3)^2-2=-5$$

$$_{\mathsf{h.}} (x+2)^2 + 4(x+2) - 5 = 0$$

Strategies used:

Strategies used: