\qquad

3.1.1 How can I solve the equation?

Strategies for Solving Equations

\#1 SOLVING GRAPHICALLY

One of the big ideas of Chapter 2 was how to determine special points on the graph of a function. For example, you used the equation of a parabola written in graphing form to locate its vertex without graphing. But what about the locations of other points on the parabola? Consider the graph of $y=(x+3)^{2}-5$ at right.

a. How many solutions does the	b. How many solutions does the	c. Use the graph to solve the equation $y=(x+3)^{2}-5$ have? How is this shown on the graph? equation $(x+3)^{2}-5=4$ have? How is this shown on the graph? did the graph help you solve the equation?

\#2 ALGEBRAIC STRATEGIES

Solve the equation $(x+3)^{2}-5=11$ in two different strategies.

Method 1	Method 2

\#3 Three strategies your class or team may have used in problem 3-2 are:

- Rewriting: Using algebra to write a new equivalent equation that is easier to solve.
- Looking Inside: Reasoning about the value of the expression inside the function or parentheses.
- Undoing: Reversing or doing the opposite of an operation; for example, taking a square root to eliminate squaring.

$$
\text { Given: }{ }^{\frac{x-5}{4}+\frac{2}{5}=\frac{9}{10}}
$$

a. Ernie decides to multiply both sides of the equation by 20 so that his equation becomes $5(x-5)+8=18$. Which strategy does Ernie use? How can you tell?	b. Elle takes Ernie's equation and decides to subtract 8 from both sides to get $5(x-5)=10$. Which strategy does Elle use?	c. Eric looks at Elle's equation and says, "I can tell that $(x-5)$ must equal 2 because $5 \cdot 2=10$. Therefore, if $x-5=2$, then x must be $7 . "$ What strategy does Eric use?

\#4 Given: $x^{2}+2.5 x-1.5=0$	b. Rewrite your equation again, so that you can solve it without using the Quadratic Formula. Then solve your equation.
a. Rewrite the equation so that it has no decimals.	

\#5 Solve each equation, if possible, using any strategy. Name your strategy and check with your teammates to see what strategies they choose. Be sure to check your solutions algebraically.

a. $4\|8 x-2\|=8$	b.
Strategies used:	$3 \sqrt{4 x-8}+9=15$

e. $\|3-7 x\|=-6$	f. $\frac{6 w-1}{5}-3 w=\frac{12 w-16}{15}$
Strategies used:	Strategies used:
S. $x-3)^{2}-2=-5$	h.

