

#115 Now, take another look at the same situation with a similar, but slightly different approach. The graph of $f(x) = x^2$ for $x \ge 0$ is shown below, but this time the rectangles on the interval $1 \le x \le 3$ are different.

#116		
a. Is the graph of $f(x) = x^2$ increasing or decreasing for $1 \le x \le 3$?	b. Which type of rectangles produced the underestimate of the actual area under the curve? Why?	

#116 Continued		
c. Sketch an example of a curve where the right endpoint rectangles will produce an underestimate of the area under a curve. Is your curve increasing or decreasing?	from pr to one a can do	approximations 6.75 un ² and 10.75 un ² , oblems 3-114 and 3-115, are not close another. In your team, discuss what you to make the approximations closer er and record your ideas.
#117 A LITTLE BIT CLOSER NOW a. What is the width of each rectangle?		The graph of $f(x) = x^2$ for $x \ge 0$ is shown at below. This time on the interval $1 \le x \le 3$ the width of each rectangle has been made smaller.
b. What is the height of each rectangle?		
c. How are the heights generated from the function?		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ x \end{array}$
d. Approximate $A(f, 1 \le x \le 3)$. How does this problems 3-114 and 3-115?	answer c	ompare to the approximations from

#118			
a. Write a linear equation for x_k . Remember that when $k = 0$ then $x_0 = 1$, and when $k = 4$ then $x_4 = 3$.	b. Write an expression for the heights of the left endpoint rectangles in terms of <i>k</i> .		
c. What is the width of each rectangle?			
-	puting $A =$ (height)(width). Use your expressions he area of a left endpoint rectangles in terms of k .		
e. Now, use sigma notation and your equation i used to calculate the sum of the areas of the fo Remember that for left endpoint rectangles, sta	ur left endpoint rectangles from problem 3-114.		
#119 Write the sum for the right endpoint rectangles used in problem 3-115 in sigma notation.			
How does the sigma notation for problem 3-115 compare to the sigma notation for problem 3-114? What is the same? What is different?			
#120 Write the sum from problem 3-117 in sign right endpoint rectangles.	a notation for both left endpoint rectangles and		
Left endpoint rectangles	Right endpoint rectangles		