

4.1.1 How can I describe the graph?

#1 Continued			
Equation	Sketch	Degree/Intercepts	End Behavior
$f(x) = (x+2)^4(x-1)$	1	Degree: y-intercept:	As the x-values increase the y-values
		➤ x-intercepts:	As the x-values decreaser the y-values
$f(x) = -(x+2)^4(x-1)$	1	Degree: y-intercept:	As the x-values increase the y-values
		★ x-intercepts:	As the x-values decreaser the y-values
$f(x) = (x+3)(x-1)^5$	1	Degree: y-intercept:	As the x-values increase the y-values
		➤ x-intercepts:	As the x-values decreaser the y-values
$f(x) = -(x+3)(x-1)^5$	1	Degree: y-intercept:	As the x-values increase the y-values
		➤ x-intercepts:	As the x-values decreaser the y-values

#1 Continued: Compare your equations and graphs. What connections can you make between the equation of the polynomial and its graph?

#2 Sketch each of the polynomial functions below without a graphing calculator. Do not scale your axes, but be sure to label the important points.

