\qquad

4.1.1 How can I describe the graph?

\#1 Complete the table below

| Equation | Sketch | | Degree/Intercepts |
| :--- | :--- | :--- | :--- | | End Behavior |
| :--- |
| $f(x)=(x-2)(x-5)$ |
| |
| |

\#1 Continued			
Equation	Sketch	Degree/Intercepts	End Behavior
$f(x)=(x+2)^{2}(x-3)$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values \qquad
$f(x)=-(x+2)^{2}(x-3)$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values \qquad
$f(x)=(x+3)(x-1)^{3}$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values \qquad
$f(x)=-(x+3)(x-1)^{3}$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values \qquad

\#1 Continued			
Equation	Sketch	Degree/Intercepts	End Behavior
$f(x)=(x+2)^{4}(x-1)$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values
$f(x)=-(x+2)^{4}(x-1)$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values
$f(x)=(x+3)(x-1)^{5}$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values
$f(x)=-(x+3)(x-1)^{5}$		Degree: y-intercept: x-intercepts:	As the x-values increase the y-values \qquad As the x-values decreaser the y-values

\#1 Continued: Compare your equations and graphs. What connections can you make between the equation of the polynomial and its graph?
\#2 Sketch each of the polynomial functions below without a graphing calculator. Do not scale your axes, but be sure to label the important points.

