\qquad
\qquad
4.2.1 Are you feeling rational?
\#50 GRAPHING RATIONAL FUNCTIONS, Part 1

e. Describe the end behavior of g. That is:

As the x-values increase the y-values \qquad . (As $x \rightarrow \infty, y \rightarrow$ \qquad .)

As the x-values decrease the y-values \qquad . (As $x \rightarrow-\infty, y \rightarrow$ \qquad .)
f. For this function you can write an equation to describe the end behavior. Use your answers to part (e) to write the equation of the end-behavior function.
\#51 REWRITING RATIONAL FUNCTIONS
Some rational functions look complicated, but are simply shifts of $f(x)=\frac{1}{x}$.
a. Use polynomial division (long division or an area model) to rewrite $h(x)=\frac{3 x+7}{x+2}$. What do you notice?
b. Where are the intercepts of $y=h(x)$? Which form of the equation is most useful for determining the intercepts?
c. Where are the asymptotes (both horizontal and vertical) of $y=h(x)$? Which form of the equation is most useful for determining the asymptotes?
\#52 Now that her team has completed the polynomial division in problem 4-51, Najma thinks she knows another way to rewrite equations of rational functions. Najma says to her team, "If rational functions are fractions, perhaps we can use a process similar to writing a fraction greater than 1 as a mixed number."

20
 a. Write ${ }^{\frac{20}{17}}$ as a mixed number.

b. Najma wants to rewrite the fraction by using a Giant One:
$\frac{20}{17}=\frac{17+3}{17}=\frac{17}{17}+\frac{3}{17}=1+\frac{3}{17}$. Explain the steps that are used in this approach.
C. Illustrate this new approach on the number $\frac{19}{7}$.
\#52 Continued
d. Work with your team to rewrite ${ }^{\frac{x+3}{x+1}}$ using the same technique as outlined in part (b).
e. Now use this method to rewrite $h(x)=\frac{3 x+7}{x+2}$, the function in problem 4-51.
\#53 Consider the function $k(x)=\frac{2 x-5}{x-3}$.
a. Use polynomial division or Najma's method to rewrite $k(x)$ in the form $y=\frac{a}{x-h}+k$.

| b. Where are the intercepts of $y=k(x) ?$ | c. Where are the asymptotes (both
 horizontal and vertical) of $y=k(x) ?$ |
| :--- | :--- | :--- |
| d. Graph $y=k(x)$. | e. Describe the end behavior of $y=k(x)$. |

