Name: \qquad
4.2.3 Is the feeling reciprocal?

Today you examine a special type of fractional function. You will graph the reciprocal of a given function.
\#90 Let $f(x)=x-3$ and $g(x)=\frac{1}{f(x)}$.
a. Make a table for each function and then graph each function.

b. You should have noticed that when $x=3, y=f(x)$ has an x-intercept, but $g(x)$ is undefined. Why?
c. To more accurately sketch and understand the graph of $y=g(x)$, complete the table below. Then update your graph if necessary.

x	2.9	2.99	2.999	2.9999	3	3.0001	3.001	3.01	3.1
$g(x)$					und.				

d. What happens to the graph of $y=g(x)$ near the x-intercept of $y=f(x)$? Why?
\#91 Let $f(x)=x^{2}-4$.
a. Sketch a graph of $f(x)=x^{2}-4$.

c. Does the graph of $y=f(x)$ have any x-intercepts? If so, where? If not, why not?
e. Will the graph of $y=g(x)$ have a horizontal asymptote? If so, write its equation and explain why. If not, explain why not.
g. For what x-values will $g(x)$ be negative? Explain.
f. For what x-values will $g(x)$ be positive?

Explain.
b.Using only your graph of $y=f(x)$ and without using a calculator, predict what the graph of $g(x)=\frac{1}{f(x)}=\frac{1}{x^{2}-4}$ will look like. Sketch your prediction.

d. Does the graph of $y=g(x)$ have any vertical asymptotes? If so, write the equations and explain why. If not, explain why not.
-
h. Graph $y=g(x)$ using a calculator and check your prediction.

