\qquad
5.1.1 How can I "undo" a function?
"Undo" Equations

\#1 Guess My Number

When I add 4 to my number and then multiply the sum by 10 , I get -70 . What's my number?

What is the number?

Do	
Undo	

\#2 Anita has a function machine. When she puts 3 into the machine, 7 comes out. When she puts 4 in, 9 comes out, and when she puts -3 in, -5 comes out.
a. What is this machine is doing to the input to generate an output?

x	
y	

b. Anita's function machine suddenly starts working backwards. If 7 is pulled back into this machine, what value do you think will come out of the top?
c. What would you expect to come out the top if 9 is entered? If -5 is entered? Explain.
d. Backwards function machine in a table.

What is Anita's backwards function machine is

x	
y	

c. Write equations for Anita's original function machine and for her backwards machine. How are the two functions related?
\#3 Given the function $f(x)=5 x+2$
a. Write an equation for the inverse.

Equation:

Do	
Undo	

b. An "undo" function is called an inverse function and has the notation $f^{-1}(x)$. Note that the -1 is not a negative exponent. It is the mathematical symbol that indicates the inverse function of $f(x)$. Write an equation for $f^{-1}(x)$, Keiko's "undo" function machine.
c. Make a table for $f(x)$ and $f^{-1}(x)$ what do you notice?
\#4 Keiko is working with a new function, $g(x)$. She writes down the following steps for $g(x)$:

- Add 5.
- Divide by 2 .
- Cube it.
- Multiply by 6.
a. What is the equation for $g(x)$? What is the output when 3 is the input?
b. Help Keiko write down the steps (in words) for the inverse machine, $g^{-1}(x)$, and then write its equation.
c. Verify that your equation in part (b) correctly "undoes" the output of $g(x)$ in part (a).
\#5 What are the inverse functions for each of the functions below? Use function notation. Justify that each equation for the inverse works. Solve for a / b inverses algebraically. Use a do/undo table for c/d

a. $f(x)=3 x-6$	b. $g(x)=x^{3}-5$
Algebra	Algebra
$\begin{aligned} & f^{-1}(x)= \\ & f\left(f^{-1}(x)\right)= \end{aligned}$	$\begin{aligned} & g^{-1}(x)= \\ & g\left(g^{-1}(x)\right)= \end{aligned}$
c. $p(x)=2(x+3)^{3}$	d. $t(x)=\frac{10(x-4)}{3}$
Do/Undo	Do/Undo
$\begin{aligned} & p^{-1}(x)= \\ & p\left(p^{-1}(x)\right)= \end{aligned}$	$\begin{aligned} & t^{-1}(x)= \\ & t\left(t^{-1}(x)\right)= \end{aligned}$

