\qquad Name: \qquad
5.1.1 How can I use exponential functions?

Applications of Exponential Functions

\#2 Julie has a fresh cup of hot coffee that has a temperature of $180^{\circ} \mathrm{F}$. The temperature of the room is $70^{\circ} \mathrm{F}$.
a. Sketch a graph of the temperature of the coffee over time.

b. Let $\mathrm{t}=$ number of minutes after Julie pours her coffee, and let $y=$ the temperature of the coffee in ${ }^{\circ} \mathrm{F}$. Five minutes after Julie pours her coffee, its temperature is $160^{\circ} \mathrm{F}$. Write an equation to model this situation.
c. What is the temperature of the coffee 15 minutes after it was poured? Justify your answer using the equation.
\#3 An important application of exponential functions lies in calculating the intensity of radiation from radioactive isotopes by using a mathematical model. Most isotopes emit particles and decay into stable forms. The amount of decay of the particles can be described by the isotope's half-life, which is the amount of time it takes half of the isotope to decay. For example, the half-life of Bromine-85 is 3 minutes. If you start with 60 g of Bromine-85, 3 minutes later 30 g will remain. How much Bromine-85 will remain after 20 minutes?
a. Estimate the answer.
b. Use the given information to write an equation that models the situation. (round your b-value/multiplier to the nearest 100th)
c. Use your equation to see how much bromine remains after 20min.

