\qquad Name: \qquad Period: A1 A2 A3 B1 B3
5.1.2 How can I determine an inverse?

Using a Graph to Determine an Inverse

\#15

a. Make a careful graph of each function's inverse on the same set of axes as its corresponding function. Look for a way to make the graph without determining the equation of the inverse first. Be prepared to share your strategy with the class.

Is the inverse a function?

Is the inverse a function?

\#16 When you look at the graph of a function and its inverse, you can see a symmetrical relationship between the two graphs demonstrated by a line of symmetry.
a. Use a colored pencil to draw the line of symmetry for each graph in problem 5-15.
b. What is the equation of the line of symmetry for each graph?
c. Why do you think this line makes sense as the line of symmetry between the graph of a function and its inverse?

\#17

x	y
-6	
-4	
-2	
0	
2	
4	
6	

\#18 Now you will look at the relationship between the domain and range of a function and its inverse.

| a. What are the domain and range of $y=\left(\frac{x}{2}\right)^{2} ?$ b. How are the domain and range of the original
 What are the domain and range of its inverse?
 function related to the domain and range of the
 inverse?
 Original:
 Domain: Range:
 Inverse:
 Domain: Range: |
| :--- | :--- |

\#20 Write the equation of the inverse of $y=\left(\frac{x}{2}\right)^{2}$.	Graph both equations on your graphing calculator to check that the graphs are symmetric. (Use zoom Zsquare to fix the proportions.) What do you notice?

\#21 Consider your equation for the inverse of $y=\left(\frac{x}{2}\right)^{2}$.
a. Is the inverse a function? How can you tell?
b. Use color to trace over the portion of your graph of $y=\left(\frac{x}{2}\right)^{2}$ for which $x \geq 0$. Then use another color to trace the corresponding part of the inverse graph. Write an equation for the traced portion of the inverse graph.
c. In part (b) you restricted the domain of the original function so that the inverse was also a function. Is there a
 different way to restrict the domain so that the inverse is a function? What is the equation of this inverse function?

\#22 Consider the function $g(x)=(x-3)^{2}$.		
a. How can you restrict the domain of $g(x)$ so that its inverse will be a function?	b. Graph $g(x)$ with its domain restricted, and then graph $g^{-1}(x)$ on the same set of axes.	
	$\square \quad 0 \quad 3$	$\square \times$
	$\square \quad 5$	$\square-$
		- - - -
		$\square-\square$
	${ }^{-8}-^{-6} 5^{-5} 4^{-3}{ }^{-2 \cdot 1}$	${ }^{1} 2^{3} 4^{4} 5^{6} 7^{8} 9 x$
	$\square \quad \begin{aligned} & -1 \\ & -1\end{aligned}$	$\square \square$
	$\begin{aligned} & -2 \\ & .3 \\ & .3 \end{aligned}$	$\square-$
	$\square \quad\left[\begin{array}{c}-4 \\ .5\end{array}\right.$	- -
c. What is the equation for $g^{-1}(x)$?		-
	8	-

\#23 How can you determine from a graph whether its inverse will be a function? Explain. What are some examples of other functions whose inverses are not functions?

