

Simplify the following expressions using properties of exponents.

1. $\left(x^{3}\right)\left(x^{4}\right)$
2. $\frac{a^{9}}{a^{6}}$
3. $\left(y^{2}\right)^{5}$
4. $\left[\left(z^{2}\right)^{3}\right]^{2}$
5. $\left[\left(z^{2}\right)\left(x^{4}\right)\right]^{3}$
6. $\left[\left(y^{-2}\right)\left(y^{3}\right)\right]^{0}$
7. $\left[\left(a^{-3}\right)\left(a^{5}\right)\right]^{3}$
8. $\left(\frac{x^{4}}{x}\right)^{2}$
9. $\left(x^{-3}\right)\left(x^{3}\right)+\left(y^{4}\right)\left(y^{-4}\right)$
10. $(2 x)^{3}(3 x)^{2}$
11. $\frac{(5 x)^{2}(2 x)^{2}}{5 x}$
12. $\left[\frac{(3 x)^{3}(2 x)^{2}}{4 x}\right]^{2}$
\#12 Can two different transformations give the same result? To explore this, consider the exponential function $k(x)=5(2)^{3(x-2)}$. Can this equation also be written in the form $y=a \cdot b^{x}$? Work with your team to determine if it is possible to rewrite $k(x)$ using only a vertical stretch. If so, justify your decision. If not, explain completely why it does not work.
\#14 Let $f(x)=3 \cdot 4^{x}$. Use the properties of exponents to show that each of the following equations is true.

a. $f(x+2)=16 f(x)$	b. $f(x-1)=\frac{1}{4} f(x)$

\#15 As you saw in the previous problems, for an exponential function, a horizontal shift is equivalent to a vertical stretch. To visualize this, look at the graphs below.
a. Discuss these graphs with your team to make sure everyone understands that the graphs demonstrate that for an exponential function, a horizontal shift is equivalent to a vertical stretch.

This is a typical increasing exponential function.

b. Graphs help demonstrate why, but they do not prove, that for any exponential function, every horizontal shift is equivalent to a vertical stretch. Algebraically prove that the two forms, $y=b^{x+h}$ and $y=a \cdot b^{x}$, are equivalent. That is, a horizontal shift is equivalent to a vertical stretch for exponential functions.

