\qquad Name: \qquad
5.2.1 Do you need a base to have rhythm?

Logarithms

\#37 Leoma has hooked up two function machines as shown in the diagram at right.
a. When Leoma puts 4 into the first machine, 81 comes out. Then the 81 goes into the second machine. What comes out?
b. Next Leoma puts a 2 into the first machine. What number comes out of this machine and goes into the second machine? What then comes out of the second machine?
c. If x goes into the first machine, what comes out of the second machine?

d. How are functions that are inside the function machines related?

You may recall that a logarithm (called a "log" for short) represents the power to which a fixed number (a base) must be raised to produce a given number. For example, $\log _{2}(16)=4$ because $2^{4}=16$. The common logarithm is the logarithm base 10. It is expressed as $\log _{10}(x)$, but more often as $\log (x)$.
\#38 Without a calculator, evaluate each of the following logarithmic expressions. Look for and record any patterns or interesting results.

a. $\log _{3}(9)$	b. $\log \sqrt{10}$	c. $\log _{4}\left(\frac{1}{16}\right)$	d. $\log (1)$
e. $\log _{7}\left(7^{5}\right)$	f. $2_{2}^{\log _{2}(16)}$	g. $\log _{0.2}(5)$	h. $10^{\log (n)}$
i. $\log _{4}(\sqrt{2})^{3}$	j. $4^{\log _{2}(9)}$	k. $\log _{\sqrt{b}}(b)^{3 / 5}$	I. $4^{\log _{2}(x)}$

\#39 Another useful logarithm is the natural logarithm, or the logarithm base e. It is expressed as $\log _{e}(x)$, but more often as $\ln (x)$. When speaking, the two letters are stated separately as "el en x ". Without a calculator, evaluate each of the following expressions involving the natural logarithm.

a. $\ln (1)$	b. $\ln (e)$	c. $\ln \sqrt{e}$	d. $e^{\ln (x)}$

40. Can a logarithm have any base? Can you take the logarithm of any number? With your team, investigate the possible values of n, m, and b in the equation below. Record your conclusions and be prepared to share your findings with the class.

$$
\log _{b}(n)=m
$$

Solve each of the following equations.

$$
\begin{array}{l|l}
\text { a. } \ln \left(\frac{3}{2} x+9\right)=1 & \text { b. } \log (-3)=x
\end{array}
$$

