\qquad
Periods: A1 A2 A3 B1 B3
5.2.1 How can I undo an exponential function?

The Inverse of an Exponential Function

\#53 THE INVERSE EXPONENTIAL FUNCTION

\#54 AN ANCIENT PUZZLE

Here are some clues to help you figure out how the puzzle works:

$$
\begin{array}{cc}
\log _{2}(8)=3 & \log _{3}(27)=3 \\
\log _{5}(25)=2 & \log _{10}(10,000)=4
\end{array}
$$

Use the clues to determine the missing pieces of the puzzles below:

a. $\log _{2}(16)=?$	b. $\log _{2}(32)=?$
c. $\log _{?}(100)=2$	d. $\log _{5}(?)=3$
e. $\log _{?}(81)=4$	f. $\log _{100}(10)=?$

Write the exponential form to the logs you solved in problem \#54

a.	b.
c.	d.
e.	f.

\#55 How is the Ancient Puzzle related to the inverse function for $y=3^{x}$ in problem 5-53? Show how you can use the idea in the Ancient Puzzle to write an equation in $y=$ form for the inverse function of $y=3^{x}$.

