

You may recall that a logarithm (called a "log" for short) represents the power to which a fixed number (a base) must be raised to produce a given number. For example, $\log_2(16) = 4$ because $2^4 = 16$. The common logarithm is the logarithm base 10. It is expressed as $\log_{10}(x)$, but more often as $\log(x)$.				
#38 Without a calculator, evaluate each of the following logarithmic expressions. Look for and record any patterns or interesting results.				
a. log ₃ (9)	b. log √10	c. $\log_4(\frac{1}{16})$		
d. log(1)	e. log ₇ (7 ⁵)	f. 2 ^{log} (¹⁶)		
g. log _{0.2} (5)	h. 10 ^{log(n)}	i. log₄(√2)³		
j. 4 ^{log (9)}	k. $\log_{\sqrt{b}}(b)^{3/5}$	I. 4 ^{log (x)}		

#39 Another useful logarithm is the **natural logarithm**, or the logarithm base *e*. It is expressed as $\log_e(x)$, but more often as $\ln(x)$. When speaking, the two letters are stated separately as *"el en x"*.

Without a calculator, evaluate each of the following expressions involving the natural logarithm.

a. ln(1)	b. ln(e)	c. In √ē	d. $e^{\ln(x)}$

40. Can a logarithm have any base? Can you take the logarithm of any number? With your team, investigate the possible values of *n*, *m*, and *b* in the equation below. Record your conclusions and be prepared to share your findings with the class.

 $\log_{b}(n) = m$

Solve each of the following equations.

a. $\ln(\frac{3}{2}x+9) = 1$	b. $\log(-3) = x$