\qquad
5.2.2 What is a logarithm?

Defining the Inverse of an Exponential Function

\#63 Another Ancient Puzzle
Fill in the table with your teammates

x	8	32	$\frac{1}{2}$	1	16	4	3	64	2	0	0.25	-1	$\sqrt{2}$	0.2	$\frac{1}{8}$
$g(x)$	3		-1					6							

a. Describe an equation that relates x and $g(x)$.
c. Why is it difficult to think of an output for the input of 0 or -1 ?
b. Look back at the Ancient Puzzle in problem \#54. If you have not already done so, use the idea of the Ancient Puzzle to write an equation for $g(x)$.
d. What is the output for $x=25$, to the nearest hundredth?
e. Using your equation from part (b) graph $g(x)$ on a graphing calculator. How does $g(x)$ compare to the exponential graph with the same base.

\#65 Calculate each of the values below, then justify your answers by writing the equivalent exponential form.

a. $\log _{2}(32)=?$	b. $\log _{2}\left(\frac{1}{2}\right)=?$
Equivalent Exponential Form:	Equivalent Exponential Form:
c. $\log _{2}(4)=?$	d. $\log _{2}(0)=?$
Equivalent Exponential Form:	Equivalent Exponential Form:
Equivalent Exponential Form:	

