CW#____

Name:

5.2.2 What is a logarithm? Defining the Inverse of an Exponential Function

#63 Another Ancient Puzzle																
Fill in the table with your teammates																
x	8	32	$\frac{1}{2}$	1	16	4	3	<mark>64</mark>	2	0	0.25	-1	$\sqrt{2}$	0.2	$\frac{1}{8}$	
<i>g</i> (<i>x</i>)	3		-1					6								
a. Describe an equation that relates x and $g(x)$.								b. L #54 idea for g	b. Look back at the Ancient Puzzle in problem #54. If you have not already done so, use the idea of the Ancient Puzzle to write an equation for $g(x)$.							
c. Why is it difficult to think of an output for the input of 0 or –1?								d. V hun	Vhat i	s the h?	output	for x	= 25, to	o the ne	arest	
e. Using to the e	g your xpone	equa ential (tion fr graph	om pa with 1	art (b) he sa	grap me b	h g(x) ase.	on a g	raphir	ng cal	culato	r. Hov	w does	g(x) co	mpare	

#65 Calculate each of the values below, then justify your answers by writing the equivalent exponential form.

a. log ₂ (32) = ?	b. $\log_2(\frac{1}{2}) = ?$
Equivalent Exponential Form:	Equivalent Exponential Form:
c. $\log_2(4) = ?$	d. $\log_2(0) = ?$
Equivalent Exponential Form:	Equivalent Exponential Form:
e. $\log_2(?) = 3$	f. $\log_2(?) = \frac{1}{2}$
Equivalent Exponential Form:	Equivalent Exponential Form: