Name:
Periods: A1 A2 A3 B1 B3
5.2.2 What is a logarithm?

Defining the Inverse of an Exponential Function


## \#63 Another Ancient Puzzle

Fill in the table with your teammates

| $x$ | 8 | 32 | $\frac{1}{2}$ | 1 | 16 | 4 | 3 | 64 | 2 | 0 | 0.25 | -1 | $\sqrt{2}$ | 0.2 | $\frac{1}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | 3 |  | -1 |  |  |  |  | 6 |  |  |  |  |  |  |  |

a. Describe an equation that relates $x$ and $g(x)$.
c. Why is it difficult to think of an output for the input of 0 or -1 ?
b. Look back at the Ancient Puzzle in problem \#54. If you have not already done so, use the idea of the Ancient Puzzle to write an equation for $g(x)$.
d. What is the output for $x=25$, to the nearest hundredth?
e. Using your graphing calculator, graph $y=2^{x}$ and $y=\log _{2}(x)$.

Carefully copy the graph here. How do the graphs compare?
What do they have in common? What is different?


| \#65 Calculate each of the values below, then justify your answers by writing the equivalent exponential <br> form. |  |
| :--- | :--- |
| a. $\log _{2}(32)=?$ | b. $\log _{2}\left(\frac{1}{2}\right)=?$ |
| Exponential Form: | Exponential Form: |
| c. $\log _{2}(4)=?$ | d. $\log _{2}(0)=?$ |
| Exponential Form: | Exponential Form: |
| Exponential Form: |  |

## Review Practice:

1) Given $f(x)=2(x-1)^{3}+4$,
a. Write the equation for $\mathrm{f}^{-1}(\mathrm{x})$.
b. Make a table for $f(x)$ and $f^{-1}(x)$.

c. Graph $f(x)$ and $f^{-1}(x)$ on the same set of axes.

