

#52 Now use the table you created and/or the patterns you noticed to rewrite each expression as a single logarithm.		
a. log ₂ (2) + log ₂ (3)	b. log ₂ (3) + log ₂ (5)	
c. log ₂ (12) – log ₂ (6)	d. log ₂ (15) – log ₂ (3)	

#53 With your team, summarize the patterns you identified. Then explain why the patterns work. Be prepared to share your findings with the class.

#55 Now for a final property of logarithms! What is it? Complete the tables below. Be sure to use a variety of types of numbers.

56. Now use the tables you created and/or the patterns you noticed in problem 5-55 to write at least two equivalent expressions for each given expression.

a. $\log_7(x) + \log_7(x)$	b. ln(a) + ln(a) + ln(a) + ln(a)	
Equivalent expression #1	Equivalent expression #1	
Equivalent expression #2	Equivalent expression #2	
c. 5log(<i>m</i>)	d. $\log_b(n) + \log_b(n) + \log_b(n)$	
Equivalent expression #1	Equivalent expression #1	
Equivalent expression #2	Equivalent expression #2	

#57 Mr. Cooper decides to hold a contest with his students. He gives teams the following expression and tells them they have one minute to write as many equivalent expressions as they can.

 $\log_2(8) + \log_2(8) + \log_2(8)$

After 59 seconds Maddie's and David's teams each have six expressions, so when David quickly adds a 9 to his list Mr. Cooper declares, *"David's team wins!" "Mr. Cooper, "*Maddie exclaims, as she rolls her eyes, *"You didn't even check to see if all of the expressions were correct."*

Maddie's Team	David's Team	
3log ₂ (8)	log ₂ (24)	
log ₂ (512)	$\frac{\log_2(1024)}{\log_2(2)}$	
$\log_2(8^3)$	$\log_2(2^9)$	
$\log_2\left(\frac{1024}{2}\right)$	9log ₂ (2)	
$\log_2(1024) - \log_2(2)$	3log ₂ (2 ³)	
3 + 3 + 3	$\log_2(1024) - \log_2(512)$	
	9	

#57 Questions				
a. Whose team wins? Why?	b. Write three equivalent expressions neither team used.	c. Choose one incorrect expression and explain what misconception the students might have had.		