\qquad
5.2.4 How can I transform log functions?

Transformations of Logarithmic Functions

\#85 SOLVE THE LOG MYSTERY!

Your Task: What is the base of the LOG key on your calculator? With your team, start by making a table for $y=\log (x)$. Analyze the points in your table, and when you are sure you have figured out the base, write a clear statement justifying your conclusion.
\#86
a. Complete the following table for $f(x)=\log (x)$.

x								1	2	3	4	5	6
$f(x)$	-6	-5	-4	-3	-2	-1	0						

b. Make an accurate
graph of $f(x)=\log (x)$.
Remember that just like the graphs of exponential, the graphs of log functions have asymptotes, so make sure any asymptotes on your graph are clearly shown.

\#87 Sketch a graph of each of the following logarithmic functions without using your graphing calculator. Explain how each graph differs from the parent graph of $f(x)=\log (x)$. Once you have completed your work, verify that your graphs are correct using your graphing calculator.

a. $f_{1}(x)=\log (x)+3$	b. $f_{2}(x)=\log (x-2)$
 Explain transformation:	 Explain transformation:
c. $f_{3}(x)=4 \log (x+3)-2$ Explain transformation:	d. $f_{4}(x)=\log _{2}(x)+3$ Explain transformation:

