

#85 SOLVE THE LOG MYSTERY!

Your Task: What is the base of the \boxed{LOG} key on your calculator? With your team, start by making a table for y = log(x). Analyze the points in your table, and when you are sure you have figured out the base, write a clear statement justifying your conclusion.

~	l		
х			_
У			
The bas	e of ^{LOG} is	 I know this because	

#86

Compl	lete the	follow	ing tab	e for <i>f</i> (x) = log	g(x).							
x								1	2	3	4	5	6
f(x)	-6	-5	-4	-3	-2	-1	0						

b. Make an accurate graph of $f(x) = \log(x)$. Remember that just like the graphs of exponential, the graphs of log functions have asymptotes, so make sure any asymptotes on your graph are clearly shown.

#87 Continued

c. What are all of the possible types of transformations of the graph of $f(x) = \log(x)$? For each transformation, show the graph and write its equation.

