Precalculus Honors

Functions LEARNING PLAN (Chapter 1 & 2)

Name:

Date: _____

G

Period:_____

Skill/Understanding:		Review/Practice Problems	
Invers	e Functions	1-84 1-97 1-123 1-135 and CL	
	I can write the equation of an inverse functions (making a "do/undo table" or the "x-y interchange" method). I can verify my functions are inverses by using a composition. I can determine two functions are inverses by looking at their graphs or tables. I understand that all graphs of inverses must have the line of	<u>1-148</u> .	
	I understand how the domain and range of inverses are related. I can restrict the domain of a function so that it is invertible, meaning its inverse is a function		
Piecewise Functions		<u>1-96, 1-113, 1-126, 1-137,</u> and <u>CL</u>	
	I can graph a piecewise-defined function. I can evaluate values of a piecewise defined function given an input or output.	<u>1-147</u> .	
	I can determine whether a piecewise function is continuous or not.		
Describing Graphs		<u>2-25, 2-50, 2-88, 2-130,</u> and <u>CL</u>	
	I can completely describe the graphs using appropriate vocabulary.	<u>2-164</u> .	
	I can identify where a graph is increasing/decreasing, concave		
_	up/concave down, and state the location(s) of maxima and minima.		
	i can determine the domain and range when given a graph.		
Even and Odd Functions		<u>2-22, 2-37, 2-79, 2-133,</u> and <u>CL</u>	
	I understand that an even function is symmetrical about the y-axis and that $f(-x)=f(x)$	<u>2-165</u> .	
	I understand that an odd function has rotational symmetry about the origin and $f(-x)=-f(x)$.		
	I can identify whether a function is even, odd or neither by looking at its graph.		
	I can identify whether a function is even, odd or neither algebraically using its equation		
Transformations		2.34 2.49 2.86 2.141 and CI	
	I understand that if $y = f(x)$ is a function, then the transformations of the equation in graphing form can be written as: $y = a \cdot f(b(x - h)) + k$	<u>2-167</u> .	
	I understand that (h, k) is the locator point and can help me graph transformed functions.		
	I understand how the parameters <i>a</i> , <i>b</i> , <i>h</i> and <i>k</i> affect the graph of a transformed function.		
	I can transformation functions when given the equation or graph. When given the description of a transformation I can write the equation and graph the function.		

PRACTICE PROBLEMS:

- 1) Given the function $f(x) = 2\sqrt[3]{x+4} 1$,
 - a. write the equation for $f^{-1}(x)$.
 - b. Make a table for f(x) and $f^{-1}(x)$.
 - c. Graph f(x) and $f^{-1}(x)$.
 - d. Use a composition of functions to verify that f(x) and $f^{-1}(x)$ are inverses.

2) Given the piecewise function at right,

a.	Evaluate:		x^2	if $x < 2$
	i. f(3)	$f(x) = \langle$	6	if $x = 2$
	ii. f(2)		10 - x	if $x > 2$
	iii. f(1)		`	

- b. Graph f(x)
- c. Is f(x) continuous?

3) Examine g(x) below. Determine the intervals on which it is increasing, decreasing, concave up and concave down. Also identify any maxima and/or minima and state whether they are local or global. In addition please also state the domain and range. Be sure to use mathematical notation.

4) Given g(x) at right, sketch y=-g(x-1)+2.

5) Determine which functions below are even, odd or neither.

PRACTICE PROBLEMS:

a.
$$f(x) = \frac{x^3 - 4x}{2x^5}$$

b. $g(x) = 3(x-4)^2 + 7$