\qquad
\qquad
LEARNING PLAN
Period: \qquad
(Chapter 1 \& 2)

Skill/Understanding:	Review/Practice Problems
Inverse Functions - I can write the equation of an inverse functions (making a "do/undo table" or the " $x-y$ interchange" method). - I can verify my functions are inverses by using a composition. - I can determine two functions are inverses by looking at their graphs or tables. - I understand that all graphs of inverses must have the line of symmetry $y=x$. - I understand how the domain and range of inverses are related. - I can restrict the domain of a function so that it is invertible, meaning its inverse is a function	$\frac{1-84}{1-148} \text {. } 1-97,1-123, \underline{1-135} \text {, and CL }$
Piecewise Functions - I can graph a piecewise-defined function. - I can evaluate values of a piecewise defined function given an input or output. - I can determine whether a piecewise function is continuous or not.	$\frac{1-96}{1-147}, \underline{1-113}, \underline{1-126}, \underline{1-137} \text {, and CL }$
Describing Graphs - I can completely describe the graphs using appropriate vocabulary. I I can identify where a graph is increasing/decreasing, concave up/concave down, and state the location(s) of maxima and minima. - I can determine the domain and range when given a graph.	$\frac{\frac{2-25}{2-164}}{\underline{2-50}}, \underline{2-88}, \underline{2-130} \text {, and CL }$
Even and Odd Functions - I understand that an even function is symmetrical about the y-axis and that $f(-x)=f(x)$ - I understand that an odd function has rotational symmetry about the origin and $f(-x)=-f(x)$. - I can identify whether a function is even, odd or neither by looking at its graph. - I can identify whether a function is even, odd or neither algebraically using its equation	$\frac{2-22}{\frac{2-165}{2-37}} . \underline{2-79}, 2-133 \text {, and CL }$
Transformations - I understand that if $y=f(x)$ is a function, then the transformations of the equation in graphing form can be written as: $y=a \cdot f(b(x-h))+k$ - I understand that (h, k) is the locator point and can help me graph transformed functions. - I understand how the parameters a, b, h and k affect the graph of a transformed function. - I can transformation functions when given the equation or graph. - When given the description of a transformation I can write the equation and graph the function.	$\frac{2-34}{2-167}, ~ 2-49,2-86,2-141, \text { and CL }$

PRACTICE PROBLEMS:

1) Given the function $f(x)=2 \sqrt[3]{x+4}-1$,
a. write the equation for $f^{-1}(x)$.
b. Make a table for $f(x)$ and $f^{-1}(x)$.
c. Graph $f(x)$ and $f^{-1}(x)$.
d. Use a composition of functions to verify that $f(x)$ and $f^{-1}(x)$. are inverses.
2) Given the piecewise function at right,
a. Evaluate:
i. $f(3)$
ii. $f(2)$

$$
f(x)= \begin{cases}x^{2} & \text { if } x<2 \\ 6 & \text { if } x=2 \\ 10-x & \text { if } x>2\end{cases}
$$

iii. $\mathrm{f}(1)$
b. Graph $f(x)$
c. Is $\mathrm{f}(\mathrm{x})$ continuous?
3) Examine $g(x)$ below. Determine the intervals on which it is increasing, decreasing, concave up and concave down. Also identify any maxima and/or minima and state whether they are local or global. In addition please also state the domain and range. Be sure to use mathematical notation.

4) Given $g(x)$ at right, sketch $y=-g(x-1)+2$.

5) Determine which functions below are even, odd or neither.

PRACTICE PROBLEMS:

a. $f(x)=\frac{x^{3}-4 x}{2 x^{5}}$
b. $g(x)=3(x-4)^{2}+7$

