Math 3/Precalc **Functions and Equations** LEARNING PLAN

Name:

G

Date:

(Chapter 3)

Period:____

Skill / Understanding:	Review Problems:
 Piecewise Functions I can graph a piecewise-defined function. I can evaluate values of a piecewise defined function given an input or output. I can determine whether a piecewise function is continuous or not. 	See Piecewise Notes
 Even and Odd Functions I understand that an even function is symmetrical about the y-axis and that f(-x)=f(x) I understand that an odd function has rotational symmetry about the origin and f(-x)= -f(x). I can identify whether a function is even, odd or neither by looking at its graph. I can identify whether a function is even, odd or neither algebraically using its equation 	2-82, 2-95, and 2-122
 One-Variable Equations I understand that the solution to a one-variable equation is a point or points on a numberline. I can solve a wide range of 1-variable equations including equations that have an extraneous solution absolute value equations equations with decimals or fractions quadratic equations (by factoring and ZPP) quadratic equations (by quadratic formula) I can use a graph of a two-variable equation to solve a one-variable equation. 	3-10, 3-19, 3-31, 3-32, 3-38, 3-39, 3-42, 3-44, 3-49, 3-51, 3-83, 3-101, 3-104, 3-109 part (d), and CL 3-117
 Two-Variable Equations I can graph a two variable equation. I understand that the solution to a two-variable equation is every point (ordered pair) on the line or curve. 	
 Systems of Two-Variable Equations I understand that the solution to a system of equations are the points (ordered pairs) of intersection between the two curves. I can solve systems of equations both linear and nonlinear. I can solve systems of equations algebraically. I can graph a system of equations. I can identify the solution(s) of a system of equations when given the graph. 	
 Understanding Solutions I understand that a solution of an equation is the value(s) that make the equation(s) true. I can tell the difference between 1-variable equations and 2 variable equations. I understand the difference between an equation and an expression, and that expressions do not have solutions. 	

PRACTICE PROBLEMS

1 Solve the following equations:

a. $3(2x - 1)^2 + 12 = 4x - 3$ b. $\sqrt{3x + 1} - x = -3$ c. $\frac{3}{4}x^2 = \frac{5}{4}x + \frac{1}{2}$

2) Solve each system of equations without graphing. For each case, explain what the solution tells you about the graph of the system.

- a. $=\frac{1}{3}x^2 + 1$ y = 2x - 2b. $y = \sqrt{x - 3}$ y = x - 5c. 6x - 2y = -4y = 3x + 2
- 3) Given the piecewise function at right,
 - a. Evaluate: i. f(3) ii. f(2) iii. f(1) $f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 6 & \text{if } x = 2 \\ 10 - x & \text{if } x > 2 \end{cases}$
 - b. Graph f(x)
 - c. Is f(x) continuous?

4) Determine which functions below are even, odd or neither.

a.
$$f(x) = \frac{x^3 - 4x}{2x^5}$$
 b. $g(x) = 3(x - 4)^2 + 7$ c.

5) Complete the square to change the following equations to graphing form. Then sketch the graph of each equation.

a. $y = x^2 + 4x + 6$ b. $x^2 + 6x + y^2 - 8y = 0$

6) The graph at right represents the equation $y = \sqrt{25 - x^2}$ and is scaled by ones. Use the graph to solve the equation $4 = \sqrt{25 - x^2}$ and explain how you got your solution.

