Precalculus Honors **Polynomials LEARNING PLAN** (Chapter 4)

Name:		
-------	--	--

Date: _____

Period:_____

G

Skill/Understanding:		Review/Practice Problems
Interp	reting Equations Given the equation of a polynomial function in <i>factored form</i> , I can identify the degree, the orientation, the location of x- and y-intercepts, and the shape of the graph at the x-intercepts. Given the equation of a polynomial function in <i>standard form</i> , I can identify the degree, the orientation, and the location of the y-intercept. I can rewrite the equation of a polynomial function from factored form to standard form, and vice versa. (Using polynomial division or multiplication.) I can use polynomial division and the quadratic formula to determine all real and complex roots, or factors, of a polynomial.	<u>4-42, 4-58, 4-83, 4-122</u> , and <u>CL 4-131</u> .
Writing Equations		4-27 4-76 4-111 and CL
	Given the graph of a polynomial, I can write a possible equation that accurately represents the orientation, the degree, the location of intercepts, and the shape of the graph at the x-intercepts. Given a description of a polynomial curve (intercepts, degree, behavior and an additional point on a graph) I can write the equation of a polynomial function. Given the roots (real and complex) of a polynomial, I can write the equation in factored form.	<u>4-130</u> .
Interp	reting Graphs	
	Given the graph of a polynomial, I can identify the orientation and the minimum degree. Given the graph of a polynomial, I can identify the minimum number of real and complex roots. Given the graph of a polynomial, I can identify repeated roots (single, double, or triple).	
 Sketching Graphs I can make a reasonable sketch a polynomial given a description of the graph or an equation. 		<u>4-6, 4-14, 4-44, 4-75, and CL</u> <u>4-129</u> .

PRACTICE PROBLEMS:

- 1) The polynomial at right passes through the point (0, -4).
 - a. Find the exact equation of the polynomial with the lowest possible degree.
 - b. What is the degree of the polynomial?
 - c. What are the roots of the polynomial?

- 2) A 3rd degree polynomial function has roots at x = -i and x = 2. The y-intercept is (0,-6). Write an equation for this function in factored form with real coefficients.
- 3) The roots of a quadratic equation are $x = 2 + i\sqrt{5}$ and $x = 2 i\sqrt{5}$. Use these to write the equation of the parabola in standard form that has a stretch factor of 1.
- 4) Make a sketch of the following equation. You do not need to scale but make sure to label the important points:

$$y = -(x+1)^3(x-2)^2(x^2+6x+9)$$

- 5) Give the polynomial $p(x) = x^3 3x^2 + x 3$.
 - a. List all possible factors of p(x).
 - b. List all possible roots of p(x).
 - c. Rewrite p(x) in factored form using polynomial division.
 - d. Which of the possible roots is an actual real root of the polynomial? How can you tell?
 - e. Identify all the roots for p(x).