Polynomials
LEARNING PLAN
(Chapter 4)

Name: \qquad
Date: \qquad G

Period: \qquad

Skill/Understanding:	Review/Practice Problems
Interpreting Equations - Given the equation of a polynomial function in factored form, I can identify the degree, the orientation, the location of x - and y-intercepts, and the shape of the graph at the x-intercepts. - Given the equation of a polynomial function in standard form, I can identify the degree, the orientation, and the location of the y-intercept. - I can rewrite the equation of a polynomial function from factored form to standard form, and vice versa. (Using polynomial division or multiplication.) - I can use polynomial division and the quadratic formula to determine all real and complex roots, or factors, of a polynomial.	$\begin{aligned} & \frac{4-42}{\text { CL 4-131. }} \underline{4-58}, 4-83,4-122, \text { and } \\ & \underline{4} \end{aligned}$
Writing Equations - Given the graph of a polynomial, I can write a possible equation that accurately represents the orientation, the degree, the location of intercepts, and the shape of the graph at the x-intercepts. - Given a description of a polynomial curve (intercepts, degree, behavior and an additional point on a graph) I can write the equation of a polynomial function. - Given the roots (real and complex) of a polynomial, I can write the equation in factored form.	$\begin{aligned} & \frac{4-27}{4-130}, ~ 4-76 \end{aligned}, \underline{4-111} \text {, and } \underline{C L}$
Interpreting Graphs - Given the graph of a polynomial, I can identify the orientation and the minimum degree. - Given the graph of a polynomial, I can identify the minimum number of real and complex roots. - Given the graph of a polynomial, I can identify repeated roots (single, double, or triple).	
Sketching Graphs - I can make a reasonable sketch a polynomial given a description of the graph or an equation.	$\frac{4-6}{4-129} .4,4-44,4-75, \text { and CL }$

PRACTICE PROBLEMS:

1) The polynomial at right passes through the point (0, -4).
a. Find the exact equation of the polynomial with the lowest possible degree.
b. What is the degree of the polynomial?
c. What are the roots of the polynomial?

2) A 3rd degree polynomial function has roots at $x=-i$ and $x=2$. The y-intercept is $(0,-6)$. Write an equation for this function in factored form with real coefficients.
3) The roots of a quadratic equation are $x=2+i \sqrt{5}$ and $x=2-i \sqrt{5}$. Use these to write the equation of the parabola in standard form that has a stretch factor of 1 .
4) Make a sketch of the following equation. You do not need to scale but make sure to label the important points:

$$
y=-(x+1)^{3}(x-2)^{2}\left(x^{2}+6 x+9\right)
$$

5) Give the polynomial $p(x)=x^{3}-3 x^{2}+x-3$.
a. List all possible factors of $\mathrm{p}(\mathrm{x})$.
b. List all possible roots of $\mathrm{p}(\mathrm{x})$.
c. Rewrite $\mathrm{p}(\mathrm{x})$ in factored form using polynomial division.
d. Which of the possible roots is an actual real root of the polynomial? How can you tell?
e. Identify all the roots for $\mathrm{p}(\mathrm{x})$.
