\qquad
Math 3
Name: \qquad
Logarithms Practice \#1
Date: \qquad
Period: A1 A2 A3 B1 B2 B3

1. (NEW) Write the equation for the inverse of $y=3^{x}$. (Hint: Use the $x-y$ interchange method and then rewrite in logarithmic form.) Create multiple representations of the inverse of $y=3^{x}$.

2. (NEW) Using the idea behind the Ancient Puzzle you studied last class, what is the value of the unknown in each equation below?
a. $\quad \log _{b} 243=5$
b. $\quad \log _{4}\left(\frac{1}{16}\right)=z$
c. $\quad \log _{b} 0.001=3$
d. $\quad \log _{12} 144=x$
e. $\log _{5} x=-2$
f. $\quad \log _{8} x=\frac{1}{3}$
3. (REVIEW) Write the equation in graphing form of each circle described below.
a. A circle with radius 12 centered at the point $(-2,13)$.
b. A circle with center $(-1,-4)$ and radius 1 .
c. A circle with equation $x^{2}+y^{2}-6 x+16 y+57=0$. (Hint: Complete the square for both x and y.)
4. (EXPLORE) A regular tetrahedron is a triangular-based pyramid in which every face is an equilateral triangle. Is it possible to slice a regular tetrahedron and get a cross-section that is not an equilateral triangle? Justify your response, explaining completely.
5. (REVIEW, but a little tricky) Sketch the graph of $y+3=2^{x}$. Make a table if you need to.
a. What are the domain and range of this function?
b. Does this function have a line of symmetry or an asymptote? If so, what are they?
c. What are the x - and y-intercepts?
d. Sketch the inverse of this function on the same set of axes.
e. What are the domain, range, x - and y-intercepts, and asymptotes or lines of symmetry of the inverse?

6. (REVIEW) Given the following systems of equations, determine the solution (or solutions).
a. $f(x)=2 x^{2}+5$ and $g(x)=x^{2}+6$
b. $\quad|x+2|=-y$ and $y=-7$
7. (NEW) Determine the value of each expression below?
a. $\log _{8}(1)$
b. $\log _{12}(144)$
c. $\log _{16}(4)$
