Math 3

Given:

Logarithms Practice #3

Name:			

Date: _____ Period: A1 A2 A3 B1 B2 B3

1. (NEW) June is working on solving the log equation below. Unfortunately, they are using an older calculator that can only calculate log with a base of 10, so they can't calculate the value of $\log_5 12$. Examine June's work and write a justification next to each stop of their work.

$$log_5 12 = x$$
Justification:i. $5^x = 12$ Justification:ii. $log(5^x) = log(12)$ Power Property of Logsiii. $x \cdot log(5) = log(12)$ Power Property of Logsiv. $x = \frac{log(12)}{log(5)}$ Power Property of Logsv. $x = 1.544$

Use June's method to solve $\log_{9} 4 = x$.

This idea can be generalized so that we have a shortcut to use in the future. It's called **change of base**. (HINT: if you're feeling stuck, notice the connection between June's given equation and line iv.)

$$log_M N =$$

2. (NEW) How do ratios of logs in different bases compare?

a. What is
$$\frac{\log_2 32}{\log_2 4}$$
 ?

b. What is
$$\frac{\log 32}{\log 4}$$
?

- c. What do you notice about your answers for parts (a) and (b)? Use the change of base formula to explain your results.
- d. Change log,(7) into a logarithmic expression using a base of 5.

CW#____

3. (NEW) Rewrite each equation as an equivalent equation using log base 10. You do not need to calculate a numerical answer. These are sometimes known as change of base problems.

a.
$$log_2(3) = x$$
 c. $log_7(12) = x$

b.
$$log_5(8) = x$$
 d. $log_a(b) = x$

- 4. (EXPLORE) At right is a photo of a tree trunk. Sketch (or trace) the outline of the visible portion shown here. Indicate where slices should be made so that the cross-section is:
 - a. One circular region (the region might not be a perfect circle, but it should be close).
 - b. Three separate circular regions.
 - c. A free form, amoeba type shape.
- 5. Ryan has the chickenpox! He was told that the number of pockmarks on his body would grow exponentially until his body overcomes the illness. He counted pockmarks on November 1 and by November 3 the number had grown to . To determine when the first pockmark appeared, he needs to write the exponential function that models the number of pockmarks based on the date in November.
 - a. (REVIEW) Ryan decides to use the points and to write an equation for the exponential model. Use these points to write the equation of his function in the form .
 - b. (NEW) According to your model, on what day did Ryan get his first chickenpox pockmark?

6. (REVIEW) Sketch a graph of the inequalities below and shade the solution region. Then calculate the area of the shaded region.

> y < |x + 3| $v \ge 5$

