Precalculus Honors **Rational Functions and** Inequalities LEARNING PLAN

Name:

Date: _____

G

Period:____

(Chapter 4)

Skill/Understanding:		Review/Practice Problems	
Transf	ormation of $y = \frac{1}{x}$ I can rewrite rational functions as a transformation of $y = \frac{1}{x}$ using the giant one method. I can rewrite rational functions as a transformation of $y = \frac{1}{x}$ using polynomial division. I can identify horizontal and vertical asymptotes for transformation of $y = \frac{1}{x}$. I can identify all intercepts for transformation of $y = \frac{1}{x}$. I can make an accurate sketch for transformation of $y = \frac{1}{x}$.	<u>4-77, 4-110, 4-124</u> (a) and (c), and <u>CL 4-132</u> .	
Interpr	 eting Rational Function Equations I can identify all of the asymptotes for a given rational function (horizontal, vertical, slant) I can identify any holes (point discontinuities) for a given rational functions. I can identify all intercepts for a given rational function. I can state the end behavior of a rational function. I can make an accurate sketch of a rational function given the equation. 	<u>4-56</u> , <u>4-82</u> , <u>4-100</u> , and <u>CL 4-132 4-6</u> , <u>4-44</u> , <u>4-75</u> , <u>4-110</u> , <u>4-120</u> , and <u>CL</u> <u>4-135</u> .	
Reciprocal Functions 4-114 5-7, 5-68, 5-74 (c), 5-101, and			
	 When given the graph of a function, I can make a sketch of its reciprocal function. I understand the relationship between x-intercepts and vertical asymptotes for a function and its reciprocal. I understand how the y-intercepts are related between a function and its 	<u>CL 5-135</u> .	
	reciprocal. I understand how minima and maxima are related between a function and its reciprocal.		
Polync	 I can set a polynomial or rational inequality equal to zero. I can factor a polynomial or rational inequality to find boundary points. I can test values between my boundary points to see which regions are positive and which are negative. I can use a sign chart to find the solution to a polynomial or rational inequality 	<u>4-109</u> and <u>4-119</u> . <u>5-24</u> , <u>5-76</u> , <u>5-125</u> , and <u>CL 5-136</u> .	
	I can represent my solution using interval notation. I can represent my solution using inequality notation.		

PRACTICE PROBLEMS:

1) Given the rational function: $f(x) = \frac{3x+1}{x-3}$

- a. Use polynomial division <u>OR</u> the Giant One method to rewrite f(x) in the form $y = \frac{a}{x-h} + k$
- b. Use your answer to part b to sketch of graph of f(x).
- c. State any intercepts, asymptotes and end behavior for f(x) below.
- 2) The graph of the polynomial p(x) is shown at right.

Graph $y = \frac{1}{p(x)}$ on the same set of axes. State any intercepts and asymptotes below for $y = \frac{1}{p(x)}$.

3) Given $f(x) = \frac{x^2 + 5x + 6}{x + 1}$.

- a. Rewrite f(x) in factored form.
- b. Rewrite f(x) using polynomial division.
- c. Identify any intercepts and asymptotes.
- d. Sketch a graph of f(x) at right.

4) Solve $\frac{x^2-8x+3}{x+3} > 6$. State your solution using interval notation and inequality notation.

5) Given $f(x) = \frac{x+2}{x^2+3x+2}$, identify all asymptotes, holes and intercepts. Also state the end behavior for f(x).