\qquad
\qquad
\qquad
LEARNING PLAN
(Chapter 4)

Skill/Understanding:	Review/Practice Problems
Transformation of $y=\frac{1}{x}$ - I can rewrite rational functions as a transformation of $y=\frac{1}{x}$ using the giant one method. - I can rewrite rational functions as a transformation of - $y=\frac{1}{x}$ using polynomial division. - I can identify horizontal and vertical asymptotes for transformation of $y=\frac{1}{x}$. - I can identify all intercepts for transformation of $y=\frac{1}{x}$. - I can make an accurate sketch for transformation of $y=\frac{1}{x}$.	$\begin{aligned} & \frac{4-77}{}, 4-110,4-124 \\ & \text { CL 4-132. } \end{aligned}$
Interpreting Rational Function Equations \square I can identify all of the asymptotes for a given rational function (horizontal, vertical, slant) \square I can identify any holes (point discontinuities) for a given rational functions. \square I can identify all intercepts for a given rational function. \square I can state the end behavior of a rational function. - I can make an accurate sketch of a rational function given the equation.	$\begin{aligned} & \frac{4-56}{4-82}, 4-100, \text { and CL 4-132 } 4-6, \\ & \frac{4-44}{4-135}, 4-110 \\ & 4-420, \text { and CL } \end{aligned}$
Reciprocal Functions When given the graph of a function, I can make a sketch of its reciprocal function. - I understand the relationship between x-intercepts and vertical asymptotes for a function and its reciprocal. - I understand how the y-intercepts are related between a function and its reciprocal. - I understand how minima and maxima are related between a function and its reciprocal.	$\begin{aligned} & \frac{4-114}{5-7}, 5-68,5-74(\mathrm{c}), \text { 5-101, and } \\ & \text { CL 5-135. } \end{aligned}$
Polynomial and Rational Inequalities - I can set a polynomial or rational inequality equal to zero. I I can factor a polynomial or rational inequality to find boundary points. - I can test values between my boundary points to see which regions are positive and which are negative. - I can use a sign chart to find the solution to a polynomial or rational inequality - I can represent my solution using interval notation. - I can represent my solution using inequality notation.	$\begin{aligned} & \frac{4-109}{} \text { and } 4-119 \\ & \text { and CL 5-136. } \end{aligned}$

PRACTICE PROBLEMS:

1) Given the rational function: $f(x)=\frac{3 x+1}{x-3}$
a. Use polynomial division $\underline{\text { OR }}$ the Giant One method to rewrite $f(x)$ in the form $y=\frac{a}{x-h}+k$
b. Use your answer to part b to sketch of graph of $f(x)$.
c. State any intercepts, asymptotes and end behavior for $f(x)$ below.
2) The graph of the polynomial $p(x)$ is shown at right.

Graph $y=\frac{1}{p(x)}$ on the same set of axes. State any intercepts and asymptotes below for $y=\frac{1}{p(x)}$.

3) Given $f(x)=\frac{x^{2}+5 x+6}{x+1}$.
a. Rewrite $f(x)$ in factored form.
b. Rewrite $f(x)$ using polynomial division.
c. Identify any intercepts and asymptotes.
d. Sketch a graph of $f(x)$ at right.
4) Solve $\frac{x^{2}-8 x+3}{x+3}>6$. State your solution using interval notation and inequality notation.
5) Given $f(x)=\frac{x+2}{x^{2}+3 x+2}$, identify all asymptotes, holes and intercepts. Also state the end behavior for $f(x)$.

