\qquad

Final Review Packet

1) Let $f(x)=2 x^{2}-x$ and $g(x)=3 x-1$. Write an equation for each of the following function operations.
a. $f(g(-2))$
b. $g(f(x))$
2) Simplify each of the following expressions.
a. $\sqrt{a^{2} b^{5}}$
b. $\sqrt[3]{24}$
c. $\left(25 x^{4}\right)^{-1 / 2}$
d. $\left(\frac{2 x^{-2} y^{3}}{x^{-5} y^{7}}\right)^{3}$
3) Solve each equation for x.
a. $2 y+3(x+2)=6(y-5)$
b. $k x+5=5 x+2-k$
4) Graph the piecewise-defined function at right and determine if the graph is continuous. Explain your reasoning.

$$
f(x)=\left\{\begin{array}{l}
2 x^{2}+3 \text { for } x \leq 1 \\
3 x+6 \text { for } x>1
\end{array}\right.
$$

5) The parent function $f(x)=\sqrt{x}$ undergoes a series of transformations. The graph is translated left 4 units, stretched vertically by a factor of 3 and translated down 6 units. Write the equation of the transformed parent graph and graph the transformed function.

Equation:

6) Convert each the following angle measures as specified below. Then, in radians, identify another angle that is coterminal with the given angle. Use exact values.
a. 48° to radians
b. -500° to radians
c. $\frac{13 \pi}{12}$ radians to degrees
7) Decide if each of the following functions is even, odd, or neither. Justify your answer.
a. $f(x)=x^{3}+x^{2}+1$
b. $g(x)=3(x-4)^{2}+7$
C.

8) Write an equation for the graph below at right in terms of:

Sine:

Cosine:

9) Sketch the graph of $f(x)=2 \sqrt{x-3}+1$. Then write an equation for $f^{-1}(x)$ and graph $f^{1}(x)$.

10) Sketch a graph of the unit circle then draw and label the following angles. Then state the sine, cosine, and tangent of each angle.
a. $\frac{\pi}{4}$
b . $-\frac{7 \pi}{3}$
c. 3π
11) Algebraically solve each system of equations and name the method you used. Graphically check your answer.
a. $3 x^{2}+y^{2}=16$
$x^{2}-y^{2}=4$
b. $\quad y=4 x+2$
$3 x-\frac{1}{2} y=1$
12) Write an equation for the inverse for each of the following functions. Verify your answers using function composition.
a. $f(x)=(x-3)^{3}+2$
b. $g(x)=\frac{2 x-1}{x+1}$
13) Graph at least two cycles of each of the following trigonometric functions and state all the important features.
a. $a(x)=3 \cos \left(4\left(x-\frac{\pi}{4}\right)\right)-1$
b. ${ }^{y=-3 \cos \left(\frac{\pi}{5} x\right)}$

14) Solve each of the following equations for $0 \leq x<2 \pi$.
a. $2 \cos (x)+1=0$
b. $\sin (x)=\frac{\sqrt{3}}{2}$
c. $\sin ^{2}(x)=\frac{3}{4}$
c. $\tan (x)=-1$
15) Complete the following division problem. Express any remainder as a fraction.

$$
\frac{2 x^{3}+x^{2}-19 x+36}{x+4}
$$

16) Solve for x. Give exact answers.
a. $(3 x-2)^{2}+8(3 x-2)+12=0$
b. $x-6 x^{1 / 2}+4=-5$
17) Simplify each of the following expressions.
a. $(x+y) \div\left(\frac{1}{x}+\frac{1}{y}\right)$
b. $\frac{x}{x+y}-\frac{x-y}{x}$
c. $\frac{3 x^{-3}+4 x}{2 x-x^{-2}}$
18) Determine the partial fraction decomposition for $\frac{5 x-4}{(x-2)(x+1)}$.
19) Sketch the function $g(x)=4+\sqrt{x-3}$. Then approximate $A(g, 5 \leq x \leq 8)$ by both using six right endpoint rectangles and six left endpoint rectangles. Write both of the sums using sigma notation.
20) Given: $y=0.2 x\left(x^{2}-1\right)\left(x^{2}+x-12\right)$. Find all the roots of the polynomial.
21) Write a possible equation for a polynomial function, in factored form with integer coefficients, that has roots at $x=1+i, x=\sqrt{3}$, and a double root at $x=-4$.
22) Solve.

$$
x^{3}+1=x^{2}+x
$$

23) Represent the following expression using summation notation.

$$
0.5 \sqrt{2}+0.5 \sqrt{2.5}+0.5 \sqrt{3}+\ldots 0.5 \sqrt{12}
$$

