Math 3	
TOOLKIT #6 Inverses	5
Inverses	

(Chapter 5)

Name	e:			

Period: A1 A2 A3 B1 B2 B3

Acres Constitution		RESERVED TO SERVE		
MA/h-	+ 10 0	m im	area for	Canitan

Formal Definition: A function that In
"undoes" what the original function
does. The inverse function
performs in reverse order the
inverse operations of the function

In my own words:

Inverse Operation	s:	
What is the inverse of?	Addition Ex. +2	Ex2 Ex. + (-2)
	Multiplication Ex. ×10	Ex. divide or multiply by recipro
AND SOLE SOLE SOLE SOLE SOLE SOLE SOLE SOLE	Square (exponent) Ex. () ²	Ex. Square root or exponent of \$\frac{1}{2}
	Cube (exponent) Ex. () ³	Ex. Whe root or exponent of \$
	x is the exponent	¬_(ツ)_/ We'll learn about this next unit
	Absolute Value	Maybe ± x, but a with domain restrictioncheck the graph!

G.E.M.A.

"G" stands for <u>Grouping Symbols</u>, including parentheses (), brackets [], radicals $\sqrt{\ }$, fraction bars —, absolute value symbols ||, etc.

"E" stands for Exponents (and Roots!). These can be considered the same because any root could be written as an exponent instead. For example... $\sqrt{x} = x^{\frac{1}{2}}$

"M" stands for Multiplication(and Division!). These can be considered the same because division is the same as multiplying by the reciprocal. For example... $x \div 8 = x \cdot \frac{1}{8}$

"A" stands for Addition(and Subtraction!). These can be considered the same because subtraction is the same as adding the opposite. For example... x-9=x+(-9)

Do/Undo Tables (Writing the equation of an inverse STRATEGY #1)

A do/undo table can help you figure out how to write the equation of an inverse.

STEP 1: Ask yourself, "what operations does this equation do to the input, x?" Record those operations on the **Do** ↓ side of the table.

STEP 2: On the <u>Undo</u> ↑ side, record the inverse operation ____

each operation of the function.

STEP 3: Write an equation to represent the inverse operations in the

reverse order

STEP 4: Simplify the inverse equation if necessary.

Ex. $f(x) = \frac{1}{2}(x-4)^3 + 5$

Multiple Representations of Inverses

Graphs:

The graphs of inverses will have reflective symmetry. The line of symmetry is always \sqrt{z}

EXAMPLE:

Tables:

The tables of inverses are related because ______

X & y values switch

Original f(x)

X	У
-3	6
-2	0
-1	-4
0	-6.
1	-6
2	-4
3	0

Inverse	f-1	(x)

X	У
6	-3
6	-2
-4	-1
-6	0
-6	1200
-4	2
6	3
6	4

Domain & Range:

The Domain & Range of an equation and its inverse are

related because They switch

EXAMPLE:

Original g(x):

Domain: $-4 \le x < \infty$

Range: $\infty < y \le 18$

Inverse g⁻¹(x):

Domain: ∞ 4 x ≤ 1 8

Range: -4 4 4 600

How can you check that an inverse equation is correct?

Method #1: hoose a

value of x to

test...

$$f(x) = -2x^3 + 5$$
 and $f^{-1}(x) = \sqrt[3]{\frac{x-5}{-2}}$

If the original input is 2,
$$f(2) = -2(2)^3 + 5$$

Now, the output of
$$f$$
 will be the input of f^{-1} ...
$$f^{-1}(-11) = 3\sqrt{\frac{-11-3}{2}} = 3\sqrt{\frac{-116}{-2}}$$

$$= 3\sqrt{\frac{-116}{2}}$$

The output of $f^{-1}(x)$ is equal to the original input, so this example supports the claim that these two equations are inverses.

Method #2:

Composition of Functions...

To generalize the process in Method #1, the input is x...

$$f(x) = -2x^3 + 5$$
 and $f^{-1}(x) = \sqrt[3]{\frac{x-5}{-2}}$

If the original input is x, the output is $-2x^3 + 5$.

If the input for the inverse is $-2x^3 + 5$,

$$f^{-1}(f(x)) = \sqrt[3]{\frac{(-2x^3+5)-5}{-2}}$$
 (simplify)

$$= 3\sqrt{\frac{-2x^3}{-2}} = 3\sqrt{x^3} = x$$

The output of $f^{-1}(f(x)) = x$, the original input. This proves that f^{-1} will always undo f . To prove they are inverses, you must also show that $f(f^{-1}(x)) = x$ also.

Function Notation for Inverses

The symbol $f^{-1}(x)$ is read "f inverse of x" and it is used to say that this function is the inverse of f(x)

x-y Interchange (Writing the equation of an inverse STRATEGY #2)

STEP 1: Write the original equation with y instead of function notation. Rewrite the equation with x and y switched.

Ex.
$$h(x) = \frac{x}{x+2}$$

$$y = \frac{2x}{1-x}$$

$$\frac{2x = y - xy}{2x = y \cdot (1-x)}$$

