Precalculus Honors
 Inverse Functions
 Notes

Name: \qquad
Date: \qquad G

Period: \qquad

Complete the missing representations below for the function and its inverse below.
Equations:
$f(x)=(x-2)^{3}+5$ inverse: \qquad

Graphs:

Tables:

x	y
-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	

Describe the relationship between a function and its inverse for each of the representations.
Table
Equation
Graph

If the inverse of a function f is also a function, then f is invertible and its inverse is denoted by f^{-1}. (Note: $f^{-1}(x)$ does not mean $\frac{1}{f(x)}$) Is f invertible? If yes, explain why and write the inverse function using correct notation. If not, explain why not.

Inverse Function Notes

If you want to verify two functions f and g are inverses, you need to show that f and g undo one another. That is, you need to show that $f(g(x))=x$ and $g(f(x))=x$. Use composition to decide if each of the following pairs of functions are inverses.

a. $f(x)=3 x^{2}-4$	
$g(x)=x \sqrt{3}+4$	b. $f(x)=\sqrt{x}+2$
$g(x)=x^{2}-4 x+4$	

Write the equation of the inverse of each function below. Use correct notation in your answer.
a. $f(x)=3 x^{3}-5$
b. $h(x)=\frac{x+3}{2 x-8}$

