Triangle Practice

1) Solve for x and calculate the area of each triangle below.

2) Solve the triangle completely, meaning find all of the missing information including the area.

- 3) Given $\triangle DOG$, where $\angle D=64^{\circ}$, $\angle O=38^{\circ}$, and DO=8 inches.
 - a. Draw a diagram that is roughly to scale.
 - b. Solve the triangle completely.
 - c. Calculate the area of $\triangle DOG$.
- 4) Solve for the indicated angle θ or side x. Round solutions to the nearest 10th.

a.

h

C.

d.

5) Find the measure of $\angle C$. Round solutions to the nearest 10th.

a.

C 26 A A B B

6) Solve the following equations. When necessary round solution to nearest 10th.

a.
$$\log_3(x) - \log_3(5) = 2$$

b.
$$2(1.5)^x - 3 = 33$$

b.

7) Solve for
$$c: c^4 - 11c^2 - 80 = 0$$

8) Graph each function below.

a.
$$f(x) = -2(3)^x - 7$$

b.
$$g(x) = \log_6(x-2)$$

- 9) Let $f(x) = \begin{cases} x^2 & \text{for } -2 \leq x < 1 \\ 2-x & \text{for } 1 \leq x < 4 \end{cases}$
 - a. Graph f(x)
 - b. Is f(x) continuous? Explain.

