Precalculus Honors

Unit Circle Angles Notes

Name: \qquad
Date: \qquad G
Period: \qquad

Use the circle to locate all of the angles with the radian measures listed below.
$0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{5 \pi}{4}, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{7 \pi}{4}, \frac{11 \pi}{6}, 2 \pi$

What if you go the other direction? When you move clockwise around the unit circle, starting at the standard position (positive x-axis), the angle measures are negative. For each part below,
what is the positive angle that is coterminal (ends up at the same position on the circle) with the given negative angle?
For example, $-\frac{7 \pi}{6}$ is coterminal with $\frac{5 \pi}{6}$. (Verify this!)
a. $-\frac{2 \pi}{3}$
b. $-\frac{5 \pi}{4}$
c. $-\frac{11 \pi}{6}$

Angle measures can go beyond 2π as well. For example, $\frac{\frac{13 \pi}{6}}{}$ is coterminal with $\frac{\pi}{6}$. For each angle below, state the angle that is coterminal and between 0 and 2π.
a. $\frac{10 \pi}{3}$
b. $\frac{17 \pi}{4}$
C. $-\frac{25 \pi}{6}$

Use the angle measures from the previous problem to make some observations about the unit circle. For each part below, a is an integer.
a. Look at the angles that have measurements of the form $a \pi$. Where does the terminal ray of each of these angles intersect the circle?
b. Look at the angles that have measurements of the form ${ }^{\frac{a \pi}{2}}$. Where does the terminal ray of each of these angles intersect the circle?
c. Look at the angles that have measurements of the form ${ }^{\frac{a \pi}{4}}$. Where does the terminal ray of each of these angles intersect the circle?
d. Look at the angles that have measurements of the form ${ }^{\frac{a \pi}{3}}$. Which axis is the terminal ray of each of these angles closest to?
e. Look at the angles that have measurements of the form $\frac{a \pi}{6}$. Which axis is the terminal ray of each of these angles closest to?

